Choose the correct answer in the Exercises 11 and 12.

- **11.** If A, B are symmetric matrices of same order, then AB BA is a
	- (A) Skew symmetric matrix (B) Symmetric matrix
- (C) Zero matrix (D) Identity matrix **12.** If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, and $A + A' = I$, then the value of α is (A) $\frac{1}{6}$ π (B) $\frac{1}{3}$ π (C) π (D) 3 2 π

3.7 Elementary Operation (Transformation) of a Matrix

There are six operations (transformations) on a matrix, three of which are due to rows and three due to columns, which are known as *elementary operations* or *transformations*.

(i) *The interchange of any two rows or two columns*. Symbolically the interchange of *i*th and *j*th rows is denoted by $R_i \leftrightarrow R_j$ and interchange of *i*th and *j*th column is denoted by $C_i \leftrightarrow C_j$.

For example, applying R₁
$$
\leftrightarrow
$$
 R₂ to A = $\begin{bmatrix} 1 & 2 & 1 \\ -1 & \sqrt{3} & 1 \\ 5 & 6 & 7 \end{bmatrix}$, we get $\begin{bmatrix} -1 & \sqrt{3} & 1 \\ 1 & 2 & 1 \\ 5 & 6 & 7 \end{bmatrix}$.

(ii) *The multiplication of the elements of any row or column by a non zero number*. Symbolically, the multiplication of each element of the ith row by k , where $k \neq 0$ is denoted by $R_i \rightarrow kR_i$.

The corresponding column operation is denoted by $C_i \rightarrow kC_i$

For example, applying
$$
C_3 \rightarrow \frac{1}{7}C_3
$$
, to $B = \begin{bmatrix} 1 & 2 & 1 \\ -1 & \sqrt{3} & 1 \end{bmatrix}$, we get $\begin{bmatrix} 1 & 2 & \frac{1}{7} \\ -1 & \sqrt{3} & \frac{1}{7} \end{bmatrix}$

(iii) *The addition to the elements of any row or column, the corresponding elements of any other row or column multiplied by any non zero number.* Symbolically, the addition to the elements of ith row, the corresponding elements of *j*th row multiplied by *k* is denoted by $R_i \rightarrow R_i + kR_j$.

The corresponding column operation is denoted by $C_i \rightarrow C_i + kC_j$.

For example, applying
$$
R_2 \to R_2 - 2R_1
$$
, to $C = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$, we get $\begin{bmatrix} 1 & 2 \\ 0 & -5 \end{bmatrix}$.

3.8 Invertible Matrices

Definition 6 If A is a square matrix of order *m*, and if there exists another square matrix B of the same order *m*, such that $AB = BA = I$, then B is called the *inverse* matrix of A and it is denoted by A^{-1} . In that case A is said to be invertible.

For example, let
$$
A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}
$$
 and $B = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$ be two matrices.
\nNow $AB = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$
\n
$$
= \begin{bmatrix} 4-3 & -6+6 \\ 2-2 & -3+4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I
$$
\nAlso $BA = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$. Thus B is the inverse of A, in other

 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ = . Thus B is the inverse of A, in other

words $B = A^{-1}$ and A is inverse of B, i.e., $A = B^{-1}$

Note

- 1. A rectangular matrix does not possess inverse matrix, since for products BA and AB to be defined and to be equal, it is necessary that matrices A and B should be square matrices of the same order.
- 2. If B is the inverse of A, then A is also the inverse of B.

Theorem 3 (Uniqueness of inverse) Inverse of a square matrix, if it exists, is unique. **Proof** Let $A = [a_{ij}]$ be a square matrix of order *m*. If possible, let B and C be two inverses of A. We shall show that $B = C$.

Since B is the inverse of A

$$
AB = BA = I \qquad \qquad \dots (1)
$$

Since C is also the inverse of A

$$
AC = CA = I \qquad \qquad \dots (2)
$$

Thus
$$
B = BI = B (AC) = (BA) C = IC = C
$$

Theorem 4 If A and B are invertible matrices of the same order, then $(AB)^{-1} = B^{-1}A^{-1}$.

Proof From the definition of inverse of a matrix, we have

3.8.1 *Inverse of a matrix by elementary operations*

Let X, A and B be matrices of, the same order such that $X = AB$. In order to apply a sequence of elementary row operations on the matrix equation $X = AB$, we will apply these row operations simultaneously on X and on the first matrix A of the product AB on RHS.

Similarly, in order to apply a sequence of elementary column operations on the matrix equation $X = AB$, we will apply, these operations simultaneously on X and on the second matrix B of the product AB on RHS.

In view of the above discussion, we conclude that if A is a matrix such that A^{-1} exists, then to find A^{-1} using elementary row operations, write $A = IA$ and apply a sequence of row operation on $A = IA$ till we get, $I = BA$. The matrix B will be the inverse of A. Similarly, if we wish to find A^{-1} using column operations, then, write $A = AI$ and apply a sequence of column operations on $A = AI$ till we get, $I = AB$.

Remark In case, after applying one or more elementary row (column) operations on $A = IA (A = AI)$, if we obtain all zeros in one or more rows of the matrix A on L.H.S., then A^{-1} does not exist.

Example 23 By using elementary operations, find the inverse of the matrix

$$
A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}.
$$

Solution In order to use elementary row operations we may write $A = IA$.

or
$$
\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$
A, then $\begin{bmatrix} 1 & 2 \\ 0 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$ A (applying $R_2 \rightarrow R_2 - 2R_1$)